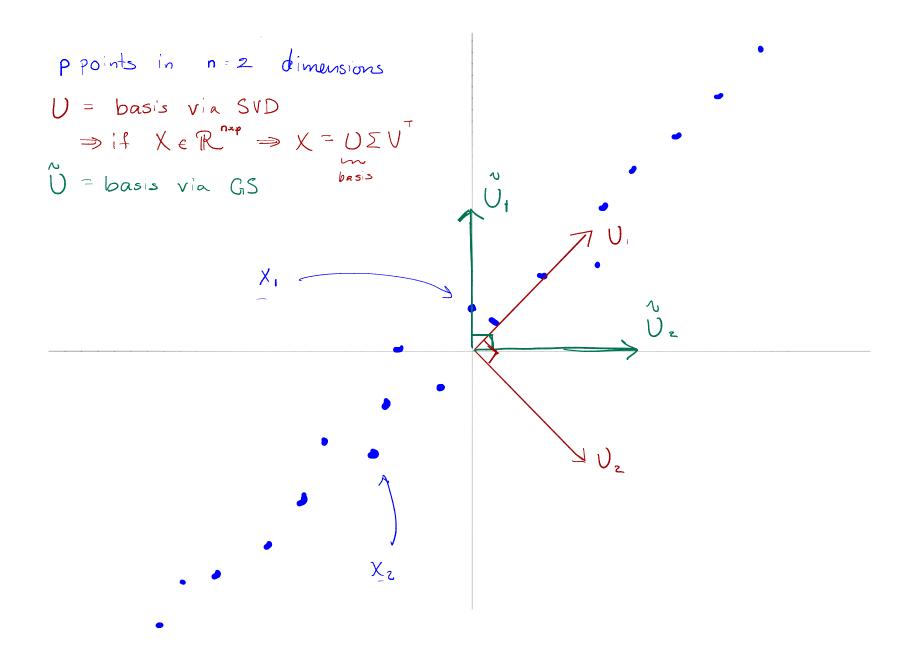
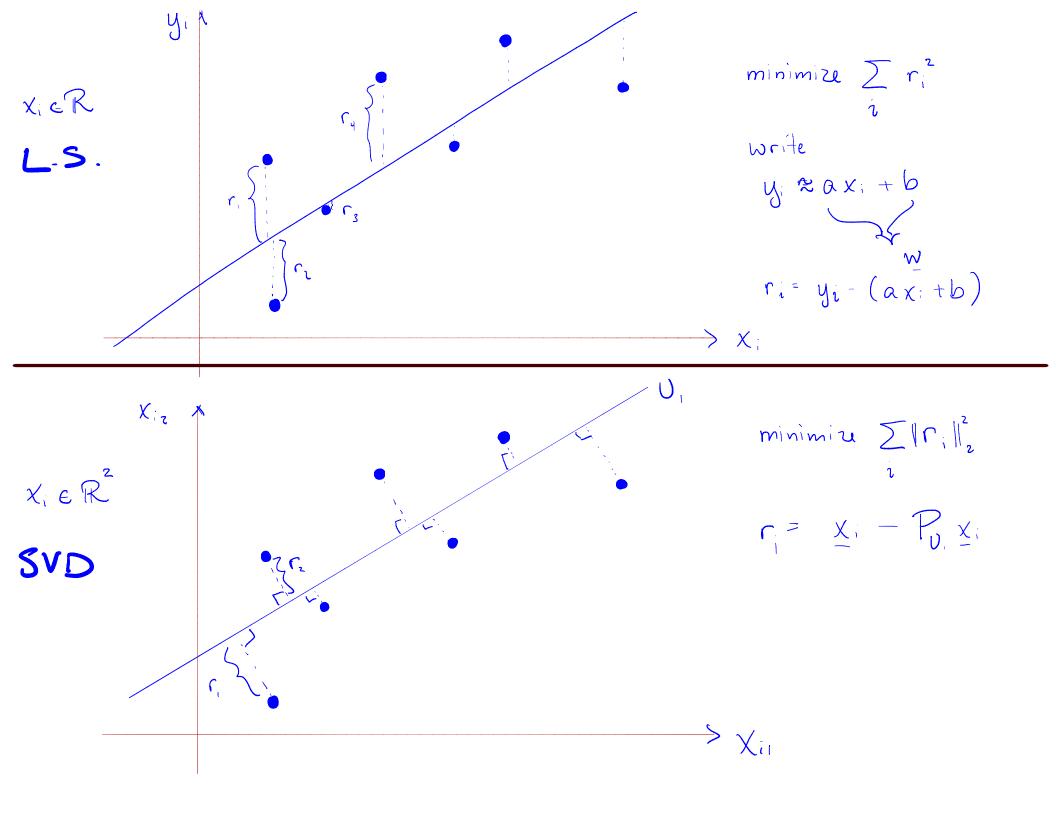
Lecture 7: Introduction to the Singular Value Decomposition

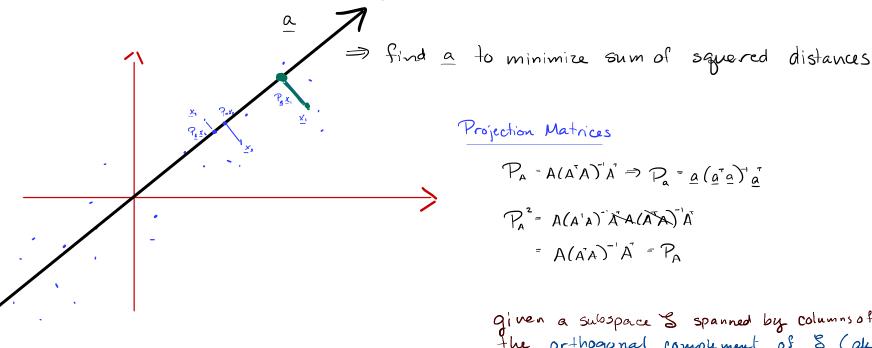


U, is the 1d subspace that is closest to all the X,1's (ie best ld subspace fit)



Introduction to the Singular Value Decomposition (SVD)

Ex. find a ld-subspace (line through origin) that is closest to a set of points $X_1, X_2, ..., X_n \in \mathbb{R}^n$



Projection Matrices

$$P_{A} = A(A^{T}A)^{T}A^{T} \Rightarrow P_{a} = \underline{a}(\underline{a}^{T}\underline{a})^{T}\underline{a}^{T}$$

$$P_A^2 = A(A^TA)^{-1}A^TA(A^TA)^{-1}A^T$$

$$= A(A^TA)^{-1}A^T = P_A$$

given a subspace & spanned by columns of A, the orthogonal complement of & Caka orthogonal complement of A) is alle set of all westors to orthogonal to all columns of A (ie orthogonal to every vector in S)

Let
$$A \in \mathbb{R}^{p \times r}$$
, $B \in \mathbb{R}^{p \times (p - r)}$ be orthogonal complements
 $\Rightarrow AB = 0$ and any $x \in \mathbb{R}^{p}$ can be written
as $x = Au + Bv$ for some $u \in \mathbb{R}^{r}$, $v \in \mathbb{R}^{p - r}$
 $P_{A} \times P_{B} \times P_{B} \times P_{A} \times P_{B} = I$
 $\Rightarrow I - P_{A} = P_{A} + P_{B} - P_{A} = P_{B}$

→ I-Pa is also a Projection matrix!

distance from X: to line a:

$$d_{i}^{z} = \| \underline{x}_{i} - \underline{P}_{\underline{a}} \underline{x}_{i} \|_{z}^{z}$$

$$= \| \underline{x}_{i} - \underline{a} (\underline{a}_{\underline{a}}) \underline{a}_{\underline{a}_{\underline{a}}} \underline{x}_{i} \|_{z}^{z}$$

$$= \| \underline{x}_{i} - \underline{a} \underline{a}_{\underline{a}_{\underline{a}_{\underline{a}}}} \underline{x}_{i} \|_{z}^{z}$$

$$= \| (\underline{I} - \underline{a} \underline{a}_{\underline{a}$$

Want to minimize
$$\sum_{i=1}^{p} d_{i}^{2} = \sum_{i=1}^{p} \left(\underbrace{x_{i}^{T} x_{i}} - \underbrace{\left(\underline{a}^{T} \underline{x_{i}} \right)^{2}}_{a^{T} \underline{a}} \right)$$

constant with

$$\Rightarrow \underset{\underline{a}}{\text{arg min}} \sum_{i=1}^{p} d_{i}^{z}(\underline{a}) = \underset{\underline{a}}{\text{arg max}} \sum_{i=1}^{p} \underline{\underline{a}^{T}} \underline{x_{i}} \underline{x_{i}^{T}} \underline{\underline{a}} = \underset{\underline{a}: \underline{a}^{T}}{\text{arg max}} \sum_{1=1}^{p} \underline{\underline{a}^{T}} \underline{x_{i}} \underline{x_{i}^{T}} \underline{\underline{a}}$$

$$\underline{\underline{a}^{T}} \underline{\underline{a}} \underline{\underline{a}^{T}} \underline{\underline{a}^{T}} \underline{\underline{a}} = \underbrace{\underline{a}^{T}} \underline{\underline{a}^{T}} \underline{\underline{a}^{T}}$$

Value of a that achieves maximum is 1st left singular vector of X, denoted U_1 also, $\sigma_1 = \max_{\alpha \in \Delta^T \alpha^{-1}} \| X_{\alpha}^T \|_2 = \| X_{\alpha}^T U_1 \|_2$

is called the 1^{st} singular value of X(also called the "operator norm" of $X: ||X||_{op} = ||X||_{2}$)

not like 2-norm of vector!

The bigger o, is, the smaller Id; is

- the better the xi's are aligned with a 1-d subspace

The Singular Value Decomposition

Consider a matrix $X \in \mathbb{R}^{n \times p}$. There always exists matrices V, Σ, V such that $X = U \Sigma V^T$

$$U \in \mathbb{R}^{n \times n}$$
 is orthogonal $(U^T U = U U^T = I)$, called left singular vectors $V \in \mathbb{R}^{n \times p}$ is orthogonal $(V^T V = V V^T = I)$, called right singular vectors $\Sigma \in \mathbb{R}^{n \times p}$ is diagonal; diagonal elements called singular values

$$\sum = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & &$$

$$\begin{bmatrix}
\sigma_{1} & \sigma_{p} \\
\sigma_{p} & \sigma_{n}
\end{bmatrix}$$

$$\begin{bmatrix}
\sigma_{1} & \sigma_{n} \\
\sigma_{n} & \sigma_{n}
\end{bmatrix}$$

$$\begin{bmatrix}
\sigma_{1} & \sigma_{n} \\
\sigma_{n} & \sigma_{n}
\end{bmatrix}$$

$$\begin{bmatrix}
\sigma_{1} & \sigma_{n} \\
\sigma_{n} & \sigma_{n}
\end{bmatrix}$$

The columns of U form an orthonormal wasis for the columns of X

The singular values weigh (scale dhe length) of the corresponding singular vectors.

· The number of non-zero singular vectors is the RANK of X.

The columns of V^T (rows of V) are the basis coefficients (weights on the columns of $U\Sigma$) needed to represent each column of X.

- U gives ortholoasis for all of Rn.
- 1st r columns of U give basis of best r-dim subspace fit to columns of X
- o; 's indicate how important each subspace dimension is to representing/approximating clata
- 1^{st} r columns of V give coordinates / locations of each X; within the subspace spanned by $U_1,...,U_r$

Singular values of, oz, etc. indicate how spread out points are in the subspace.

Recall Gram - Schmidt:

$$\bigcup_{1} = \chi_{1} / \|\chi_{1}\|_{2}$$

$$X_2 = X_2 - P_{0,X_1}$$

$$\bigcup_{z} = \tilde{X}_{i} / | \tilde{X}_{i} | |_{z}$$

order of points matters!

bosis vectors less interpretable