Lecture 9

SVD in Machine Learning

Ridge Regression (Xi, yi) cRP×R, i=1,..., n

until now, we considered
$$N > p$$
, $X = \begin{bmatrix} -x_1^{-} \\ -x_2^{-} \\ -x_1^{-} \end{bmatrix}$ $W = \begin{bmatrix} -x_1^{-} \\ -x_2^{-} \\ -x_1^{-} \end{bmatrix}$ $W = \begin{bmatrix} -x_1^{-} \\ -x_2^{-} \\ -x_1^{-} \end{bmatrix}$ $W = \begin{bmatrix} -x_1^{-} \\ -x_2^{-} \\ -x_1^{-} \end{bmatrix}$

These assumptions were necessary to ensure there was a unique set of weights minimizing squared error — and that X^TX had an inverse.

Let
$$X = U\Sigma V^T \implies X^TX = (U\Sigma V^T)^T(U\Sigma V^T) = V\Sigma^TU^TU\Sigma V^T = V\Sigma^T\Sigma V^T$$

Then
$$(X^T X)^{-1} = (V \Sigma^T \Sigma V^T)^{-1} = (V^T)^{-1} (\Sigma^T \Sigma)^T V^{-1} = V (\Sigma^T \Sigma)^{-1} V^T$$

Now
$$\Sigma^T \Sigma = \begin{bmatrix} \sigma_1^2 \\ \sigma_2^2 \end{bmatrix}$$
, so we can only invert $\Sigma^T \Sigma$ is all the σ_i 's >0

That is,

X has p LI columns \iff X^TX invertible \iff X is positive definite \iff all singular values >0

If X has rep LI columns, then o, > 82> > or >0 = or = or

Can we still learn a predictor when X has rxp LI columns?
e.g., if nxp (more features than training samples), there are at most n LI cols

$$\hat{\underline{w}}_{\lambda} = \operatorname{argmin} \|\underline{y} - \underline{X}\underline{w}\|_{2}^{2} + \lambda \|\underline{w}\|_{2}^{2} = (\underline{X}^{T}\underline{X} + \lambda \underline{T})^{T}\underline{X}^{T}\underline{y}$$

Let X= UZV, as before.

Then
$$\chi^T \chi + \lambda \underline{I} = \chi \Sigma^T \Sigma V^T + \lambda \underline{I} = V \Sigma^T \Sigma V^T + \lambda \underbrace{V V}^T = V \Sigma^T \Sigma V^T + V (\lambda \underline{I}) V^T$$

$$= V \left(\sum_{\tau} \sum_{\tau} + \lambda \underline{\tau} \right) V^{\tau}$$

$$\Sigma^{T}\Sigma = \begin{bmatrix} \sigma_{1}^{2} & \cdots & \vdots & \sigma_{p} = 0, \\ \sigma_{p}^{2} & \cdots & \vdots & \vdots & \vdots \\ \sigma_{p}^{2} & \cdots & \vdots & \vdots & \vdots \\ \sigma_{p}^{2} & \cdots & \vdots & \vdots & \vdots \\ \sigma_{p}^{2} & \cdots & \vdots \\ \sigma_{p}^{$$

Even if
$$\sigma_p = 0$$
,
 $\sigma_p^2 + \lambda > 0$
 $\Rightarrow III$ may not be invertible
but $III + \lambda I$ is always
invertible

→ We can always compute the ridge regression estimate, even when a unique least squares estimate olves not exist

$$\frac{w}{\lambda} = (X^{T}X + \lambda I)^{-1} X^{T} y$$

$$= V(\Sigma^{T}\Sigma + \lambda I) V^{T} V \Sigma^{T} U^{T} y$$

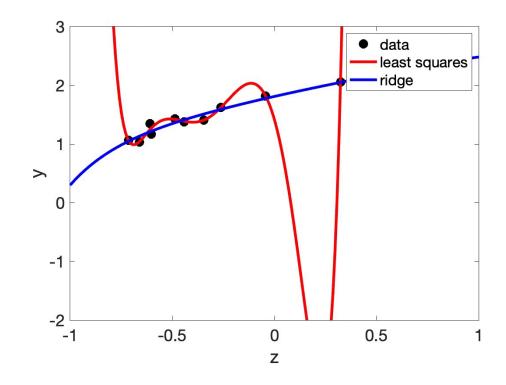
$$= V(\Sigma^{T}\Sigma + \lambda I)^{-1} \Sigma^{T} U^{T} y$$

$$\frac{\sigma_{1}}{\sigma_{1}^{2} + \lambda}$$

$$\frac{\sigma_{2}}{\sigma_{2}^{2} + \lambda}$$

$$\frac{\sigma_{p}}{\sigma_{p}^{2} + \lambda}$$

Ridge regression can help prevent overfitting



WHY?

I magine X has some very small singular values, e.g. 10-6. Also, imagine $y = X w' + \varepsilon$ where ε is random error or noise added to each sample Then $\underline{\hat{w}}_{\underline{\varepsilon}} = (X^{\tau}X)^{T}X^{T}y = (X^{\tau}X)^{T}X^{T}(X\underline{w}^{*}+\underline{\varepsilon})$ $= (X^{T}X)^{-1}X^{T}X\underline{w}^{k} + (X^{T}X)^{-1}X^{T}\underline{\varepsilon}$ a huge number >> least squares might 8:t observations very closely but give strange predictions on test data + (X^TX+XI) X^TE $= (\chi^{\mathsf{T}} \chi_{\mathsf{T}} \chi_{\mathsf{T}} \chi_{\mathsf{T}})^{\mathsf{T}} \chi_{\mathsf{W}}^{\mathsf{T}} \chi_{\mathsf{W}}^{\mathsf{T}}$

In contrast,
$$\hat{\mathbf{w}}_{R} = (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{T}(\mathbf{X}_{\mathbf{W}}^{*} + \mathbf{E})$$

$$= (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{T}\mathbf{X}_{\mathbf{W}}^{*}$$

$$= \mathbf{V} (\mathbf{\Sigma}^{T}\mathbf{\Sigma} + \lambda \mathbf{I})^{-1} \mathbf{\Sigma}^{T}\mathbf{\Sigma}_{\mathbf{V}}^{T}\mathbf{W}^{*}$$

$$\begin{bmatrix} \underline{\sigma}_{i}^{2} \\ \underline{\sigma}_{i}^{2} + \lambda \end{bmatrix}$$

$$\frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda}$$

$$\frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda}$$

$$\frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda}$$

$$\frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda}$$

+
$$(X'X+\lambda I)$$
 $X \in \mathbb{R}$
+ $V(Z'Z+\lambda I)^{T}Z^{T}U^{T}E$
 $\frac{\sigma_{i}}{\sigma_{i}^{*}+\lambda} \approx \int_{0}^{1} \sigma_{i} = \sigma_{i}^{*} \times \lambda$ none of these values "blow up" by being close to dividing by 0, so we do not magnify noise \Rightarrow better predictions on test data

- The Elephant In the Room how do we choose λ ?
- 1. Split data into 2 sets (X_i, Y_i) , i=1,..., m = + raining set (X_i, Y_i) , i=m+1,..., n = validation set.
- 2. For each $\lambda \in \{1, \lambda_2, \dots, \lambda_3\}$, find \hat{w}_{λ} using training data.

 Measure the loss of each λ using validation set $L_{\lambda} = \sum_{i=m+1}^{n} (y_i x_i^T \hat{w}_{\lambda})^2$ choose λ with smallest L_{λ} .

Alternative to ridge regression (when some singular values = 0 so many w sit y perfectly) with least squares, we needed to compute $(\Sigma^T \Sigma)^T \Sigma^T = \frac{1}{6}$, which was problematic for any $\delta_i = 1$ Alternative: define pseudoinverse of Σ as $(\Sigma^+)_{ii} = \frac{1}{6}$ if $\sigma_i > 0$ of herwise

that is, Σ^{\dagger} corresponds to taking the transpose of Σ and only inverting the nonzero diagonal entries

Special case: p>n, X has n linearly independent rows.

$$\sum_{n \text{ nonzero singular vols.}} \int_{p^{-n}}^{p^{-n}} \frac{1}{\sigma_n} ds = \sum_{n \text{ solutions}}^{p^{-n}} \frac{1}{\sigma_n} d$$

pseudoinverse solution
$$\hat{w} = V Z^{\dagger} U^{T} y$$

$$= V Z^{T} (Z Z^{T})^{-1} U^{T} y$$

$$= \chi^{T} (\chi \chi^{T})^{-1} y$$

Claim: When X has n LI Rows, the choice $\hat{W} = V \Sigma^+ U^T y = X^T (XX^T)^T y$ has the smallest norm $\|W\|_2^2$ of any W safisfying y = Xw.

Proof: for any w,

$$\|\mathbf{w}\|_{2}^{2} = \|\mathbf{w} - \hat{\mathbf{w}} + \hat{\mathbf{w}}\|_{2}^{2} = \|\mathbf{w} - \hat{\mathbf{w}}\|_{2}^{2} + 2(\mathbf{w} - \hat{\mathbf{w}})^{T}\hat{\mathbf{w}} + \|\hat{\mathbf{w}}\|_{2}^{2}$$

Assume Xw=y=Xŵ -> X(w-ŵ)=0

Then
$$(w-\hat{w})^{T}\hat{w} = (w-\hat{w})^{T}X^{T}(XX^{T})^{-1}y$$

$$= (X(w-\hat{w}))^{T}(XX^{T})^{-1}y$$

$$= 0$$

$$\Rightarrow \|\mathbf{w}\|_{2}^{2} = \|\mathbf{w} - \hat{\mathbf{w}}\|_{2}^{2} + \|\hat{\mathbf{w}}\|_{2}^{2} \Rightarrow \|\hat{\mathbf{w}}\|_{2}^{2} \Rightarrow \hat{\mathbf{w}} \text{ has smallest norm}$$

Why does minimum norm make sense?

$$\text{log.} \quad X = \begin{bmatrix} 1 & 0 & 0.1 \\ 0 & 1 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

possible
$$\underline{W}^{1}$$
s include $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix}$, $\begin{bmatrix} -10 \\ 0 \\ 100 \end{bmatrix}$, $\begin{bmatrix} -1000 \\ 0 \\ 10000 \end{bmatrix}$